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Abstract

This expository paper calculates the beta function of the Bosonic non-linear sigma model with a

Ricci-flat Euclidean target space to two-loop order following [AGFM81]. It was written as the final

project for Professor Xi Yin’s Physics 253b in Spring 2023.

1 Introduction

This paper is about the beta function of the Bosonic non-linear sigma model with a Ricci-flat Euclidean

target space and a flat worldsheet. This model is specified by the partition function

Z =

∫
[Dϕ]e−

1
h I[ϕ]

where h is some loop counting parameter and I[ϕ] is the action defined by

I[ϕ] =
1

2

∫
d2xgij(ϕ)∂µϕ

i∂µϕj .

In the above expression ϕ : W → M should be thought of as a map from a two dimensional worldsheet W to

some target manifold M of arbitrary number of dimensions. µ denotes the indices on the worldsheet while

i, j are indices on the target M . Note that on the classical level, I[ϕ] is independent of coordinates on both

the target space and the worldsheet.

Note that as written, the action I[ϕ] cannot be dealt with using perturbative QFT due to the ϕ dependence

in the metric gij . Thus, we almost always will perform taylor expansion

gij(ϕ) = gij(ϕ0) + ∂kgij(ϕ0)(ϕ
k − ϕk

0) + ...
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so that gij(ϕ0) provides the kinetic term and the derivatives such as ∂kgij(ϕ0)(ϕ − ϕ0)
k are treated as

interaction terms for Feynmann diagram calculations.

This paper will be focused on the beta function βij for the metric gij for a Ricci-flat target space. It is

easy to show that βij at 1-loop order is proportional to the Ricci tensor Rij . A natural question to consider

is what happens to the beta function when the target is already Ricci-flat (in a Calabi-Yau manifold for

instance). In the following pages, we will compute βij to 2-loop order for a Ricci-flat target and show that

βij =
h2

32π2
RiklmR klm

j .

2 Definition of the Beta Function and the 1PI RG Procedure

Renormalization can be done in many ways, so it is worthwhile to briefly describe the RG procedure that

we will use to determine the beta function. We first define the 1PI effective action Γ[φ] by

exp(− 1

h
Γ[φ]) =

∫
[Dϕ] exp(− 1

h
(I[φ+ ϕ]−

∫
d2xϕJ)) (1)

where J is chosen so that

⟨ϕ⟩J :=

∫
[Dϕ] exp

(
− 1

h
(I[φ+ ϕ]−

∫
d2xϕJ)

)
ϕ = 0.

Note that in Equation 1, the φ on the left is an abstract map φ : W → M while the right hand side a specific

coordinate is invoked to perform the addition φ + ϕ. This coordinate dependence will be discussed in the

next section.

With this definition, Γ[φ] will take the form

Γ[φ] =

∫
d2x

1

2
g1PI
ij ∂µφ

i∂µφj + ...

where g1PI
ij is defined to be the coefficient for 1

2∂µφ
i∂µφj appearing in the effective action Γ.

To regularize the UV divergence, we will use dimensional regularization D = 2 − ϵ. In our convention

here, [h] = −2, [φ] = −1 and [dDx] = −D where [] denotes mass dimension. Thus, [gij ] = −ϵ. Using

Feynman diagrams, we can compute g1PI
ij (g) as a function of our bare coupling gij . It is expected that g1PI

ij

is something physical, so it should be finite even when we take our UV regulator off (ϵ going to zero in

dimensional regularization).
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In the minimal subtraction scheme, we will express the bare coupling gij as

gij = µ−ϵ

(
gRij +

∞∑
L=1

hL
∞∑

n=1

1

ϵn
KL,n

ij

)

in terms of the dimensionless renormalized coupling gRij where the K
L,n
ij s known as counterterms are functions

of gRij . K
L,n
ij can then be determined once we assume that gRij is finite and stipulate that g1PI

ij is manifestly

finite expressed as a function of gRij . The beta function is defined by βij :=
dgR

ij

d log µ . It will be a function of

gRij that one can solve for using the condition that the bare coupling does not change:
dgij

d log µ = 0.

3 Preparation in Differential Geometry

Since we are dealing with a manifold propagating in a potentially curved target, there are some differential

geometry preliminaries necessary for the calculation. First of all, we would like our path integral measure

[Dϕ] to be coordinate independent and based on something intrinsic to our target manifold. The solution is

to utilize the geodesic equation. Let ξ(x) ∈ Tφ(x)M be a tangent vector at φ(x) ∈ M . Let ϕ(φ, ξ)(x) ∈ M be

the point reached by the geodesic when t = 1 starting at φ(x) with the initial tangent vector given by ξ(x).

We then use ξ(x) to define the fluctuation around the background field φ(x). Thus, the covariant version of

the 1PI effective action described by Equation 1 is

exp(− 1

h
Γ[φ]) =

∫
[Dξ] exp(− 1

h
(I[ϕ(φ, ξ)]−

∫
d2xξJ)) (2)

where J is chosen that

⟨ξ⟩J :=

∫
[Dξ] exp

(
− 1

h
(I[ϕ(φ, ξ)]−

∫
d2xξJ)

)
ξ = 0.

Note that in Equation 2, φ : W → M on the left hand side is an abstract map while the right hand side

depends on a specific basis of the tangent space Tφ(x)M . When we perform a change of coordinate ϕ 7→ ϕ′,

the expression in Equation 1 will gain a nonconstant Jacobian J(ϕ′) and will no longer look like Equation 1.

However, for the expression in Equation 2, when we perform a change of coordinate which induces a change

of basis on the tangent space, our Jacobian is just a constant J which will be normalized away. Thus, we

will use Equation 2 as our definition for the 1PI effective action.

To obtain an explicit expression for I[ϕ(φ, ξ)], we have to calculate Taylor expansions for gij(ϕ(φ, ξ)) and
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ϕ(φ, ξ). To obtain the Taylor expansion of ϕ(φ, ξ), one utilize the geodesic equation

d2

dt2
λi + Γi

jk(λ)(
d

dt
λk)(

d

dt
λl) = 0.

and the definition that ϕi = λi|t=1. In particular, we have

ϕ = λ(1) = λ(0) + λ′(0) + λ′′(0) + ...

where λ′(0) = ξ and the higher time derivatives can be expressed in terms of ξ by utilizing the geodesic

equation and its time derivatives. The expansion for gij(ϕ) can be obtained by first expanding gij in

coordinate and then plugging in the Taylor expansion for ϕ(φ, ξ) in terms of ξ. For instance, we have

gij(ϕ(φ, ξ)) = gij(φ) +
1

3
Rikljξ

kξl + ...

Since we care about the 2-loop result, we only need to expand I[ϕ(φ, ξ)] to fourth order in ξ since higher

order interaction vertices will imply higher number of loops in our Feynmann diagrams. The result of this

Taylor expansion, provided in [AGFM81], is

I[ϕ(φ, ξ)] = I[φ] +

∞∑
i=1

Ii[φ, ξ]

where Ii, denoting the i−th degree piece of I[ϕ(φ, ξ)], is given by

I2[φ, ξ] =
1

2

∫
d2x gij∇µξ

i∇µξj +Rik1k2jξ
k1ξk2∂µφ

i∂µφj

I3[φ, ξ] =
1

2

∫
d2x

1

3
∇k1Rik2k3jξ

k1ξk2ξk3∂µφ
i∂µφj +

4

3
Rik1k2k3ξ

k1ξk2∇µξ
k3∂µφi

I4[φ, ξ] =
1

2

∫
d2x

1

2
∇k1

Rik2k3k4
ξk1ξk2ξk3∇µξ

k4∂µφi +
1

3
Rk1k2k3k4

ξk2ξk3∇µξ
k1∇µξk4

+
1

12
(∇k1∇k2Rik3k4j + 4Rm

k1k2iRmk3k4j)ξ
k1ξk2ξk3ξk4∂µφ

i∂µφj

In the above expression, we used the abbreviation ∇µξ
i := ∂µξ

i + Γi
jkξ

j∂µϕ
k. Also, notice that we have

ignored I1 since linear terms do not contribute to the computation of Γ[φ] due to the choice of J in the

definition.
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We would like to use the ∂µξ
i∂µξjgij part inside I2 as the kinetic term in our path integral and use

Wick contractions to calculate the contribution of other terms. The obvious problem is that gij(φ(x)) is

non-constant with respect to the worldsheet coordinate x, so we don’t have the usual Gaussian integral. The

solution to this is to use Vielbein eia(φ), which are objects with two indices so that the identity

gije
i
ae

j
b = δab =: gab

is satisfied. Let eai be the inverse for eia. We define ξa := eai ξ
i. Then ∂µξ

i∂µξjgij = ∂µξ
a∂µξbgab and gab = δab

is a constant. Due to this change of variable being linear, the Jacobian to adjust [Dξi] to [Dξa] is a constant

and can be ignored after normalization. Note that the other terms in the expansion can also be expressed

in terms of ξa. For instance Rik1k2jξ
k1ξk2∂µφ

i∂µφj = Riabjξ
aξb∂µφ

i∂µφj where Riabj = Riklje
k
ae

l
b. The

quadratic part becomes

I2[φ, ξ] =
1

2

∫
d2x gab(∂µξ

a + ωac
i ∂µϕ

iξc)(∂µξb + ωbc
i ∂µϕ

iξc) +Riabjξ
aξb∂µφ

i∂µφj

where ωab
i is called the spin connection. Practically, ω can be concretely thought of as some multi-index

object that depends on eai and Γi
jk. When we calculate Feynman diagrams, we will ignore vertices involving

ω since it cannot give a covariant (with respect to target space diffeomorphism) contribution to g1PI
ij at the

two-loop order, so its effect should cancel out in the end. Inverting the kinetic part 1
2h

∫
d2x gab∂µξ

a∂µξb,

we obtain our propagator:

⟨ξa(x)ξb(y)⟩ =
∫

dDk

(2π)D
eik(x−y) hgab

k2 + µ2

where µ2 acts as the IR regulator.

4 Diagrams and Calculation

With everything prepared, we will calculate g1PI
ij in terms of the bare metric gij to order h2. For Feynman

diagrams, each vertex gives a factor of 1/h while each propagator gives a factor of h. Therefore, order h2 is

equivalent to considering diagrams with no more than two loops.

The definition of Γ[φ] is given by Equation 2, so the way to calculate g1PI
ij will be to look at the right hand

side of Equation 2 and collect terms that are proportional to ∂µφ
i∂µφj . These terms can come from I2, I3,

or I4 since higher order vertices in ξ will result in more than 2 loops. If we use dashed lines to represent the

background field φ and solid lines for the ξ field, we are looking for diagrams with two dashed lines and up
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to two solid line loops. After some observation, we see that the possible diagrams are given by the following

figure.

Figure 1: The Feynman Diagrams Contributing to g1PI
ij . We will refer to these as the 1-loop diagram, the

sunset, the butterfly, and the snowman.

The 1-loop diagram comes from the vertex Riabjξ
aξb∂µφ

i∂µφj . Due to the contraction gab coming from

the ξaξb propagator, this contribution will be proportional to Rij , which is 0 by our assumption of Ricci-

flatness. The snowman diagram is due to the term 1
3Rk1k2k3k4

ξk2ξk3∇µξ
k1∇µξk4 and Riabjξ

aξb∂µφ
i∂µφj .

Simple observation shows that the only Wick contraction pattern that does not produce the Ricci tensor will

still be zero due to integrating an odd function.

Thus, we only need to consider the sunset and the butterfly. Let’s consider the sunset diagram first.

Expanding the right hand side of Equation 2, we see that the sunset diagrams gives the following contribution

to Γ[φ].

− 1

h
Γ[φ] ⊃1

2
(
−4

3h
)2
∫

d2y1d
2y2

(
Riabc(y1)∂

µφi(y1)
) (

Ri′a′b′c′(y2)∂
νφi′(y2)

)
⟨(ξaξb∂µξc)(y1)(ξa

′
ξb

′
∂νξ

c′)(y2)⟩

We can perform Taylor expansion around y1 to obtain

Ri′a′b′c′(y2)∂
νφi′(y2) = Ri′a′b′c′(y1)∂

νφi′(y1) + ∂λ

(
Ri′a′b′c′(y1)∂

νφi′(y1)
)
(y2 − y1)

λ + ...

The derivative terms in this Taylor expansion will not give contribution of the form 1
2∂µφ

i∂µφj in Γ[φ] so

they are irrelevant for finding the coefficient g1PI
ij . Thus, we only consider the constant term in the above
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Taylor expansion and arrive at

− 1

h
Γ[φ] ⊃1

2
(
−4

3h
)2
∫

d2y1d
2y2

(
Riabc(y1)∂

µφi(y1)
) (

Ri′a′b′c′(y1)∂
νφi′(y1)

)
⟨(ξaξb∂µξc)(y1)(ξa

′
ξb

′
∂νξ

c′)(y2)⟩

≈ 1

2D

∫
d2y hRiabcR

abc
j ∂µφ

i∂µφj

(∫
dDk

(2π)D
1

k2 + µ2

)2

The ≈ sign means having the same singular part (as ϵ → 0) and since we are calculating the beta function,

the singular part is all we care about. To perform the above integral and get that clean expression, we have

to consider all six Wick contractions individually and use the following tensor identity:

RibacR
bac
i′ = 2RiacbR

bca
i′

which can be easily derived using the fact that Ri[jkl] = 0. Moreover, there are two kinds of momentum

integral one needs to perform. The first one is the following.

∫
dDk1d

Dk2
(2π)2D

k1νk1µ

(k21 + µ2)(k22 + µ2)((k1 + k2)2 + µ2)
=

∫
dDk1d

Dk2
(2π)2D

k21
(k21 + µ2)(k22 + µ2)((k1 + k2)2 + µ2)

δνµ
D

≈δνµ
D

(∫
dDk

(2π)D
1

k2 + µ2

)2

The first equality above utilizes the worldsheet euclidean symmetry of the expression to rewrite using δνµ.

Recall that ≈ sign denotes having the same singular part (as ϵ → 0). Those two expressions have the same

singular part due to the following: the k2 integral is convergent (since we are in D = 2− ϵ), so after finishing

the k2 integral, the divergence comes from the behavior of k1 → ∞ and
k2
1

k2
1+µ2 = 1 in this limit. In practice,

this means we can simply camcel out the k21 in the numerator with the k21 + µ2 in the denominator. The

second kind of momentum integral we need to perform is

∫
dDk1d

Dk2
(2π)2D

k1νk2µ

(k21 + µ2)(k22 + µ2)((k1 + k2)2 + µ2)
=

∫
dDk1d

Dk2
(2π)2D

k1k2
(k21 + µ2)(k22 + µ2)((k1 + k2)2 + µ2)

δνµ
D

≈− δνµ
2D

(∫
dDk

(2π)D
1

k2 + µ2

)2

which we obtain by realizing k1k2 = 1
2 ((k1 + k2)

2 − k21 − k22) and canceling out with the denominator. This

concludes the calculation techniques needed for the sunset.

The butterfly diagram is much simpler. It is due to the term 4Rm
k1k2i

Rmk3k4jξ
k1ξk2ξk3ξk4∂µφ

i∂µφj in

the action. Using the identity RibacR
bac
i′ = 2RiacbR

bca
i′ and considering all three contractions give us the
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result:

− 1

h
Γ[φ] ⊃ −1

4

∫
d2yRiabcR

abc
j h∂µφ

i∂µφj

(∫
dDk

(2π)D
1

k2 + µ2

)2

.

Putting the results from both diagrams together, we see that

g1PI
ij = gij + µ−2ϵh2RiabcR

abc
j (− 1

32π2ϵ
) + finite.

In particular, the 1
ϵ2 divergences cancel out between the two diagrams. To make sure g1PI

ij is finite, we see

that we should substitute in

gij = µ−ϵ

(
gRij +

h2

ϵ

1

32π2
RR

iabcR
R abc
j

)
where RR

iabc is the Riemann tensor obtained from the renormalized metric gRij . We immediately get the result

for the beta function shown in the introduction.
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