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ABSTRACT. We prove that, under certain conditions, the face ring of a cycle is totally p-anisotropic in
characteristic p. In other words, given an appropriate Artinian reduction, the Gorensteinification con-
tains no nonzero p-isotropic elements. Moreover, we prove that the linear system of parameters can
be chosen corresponding to a geometric realization with points on the moment curve. In particular,
this implies that the parameters do not have to be chosen very generically.

1. INTRODUCTION

Biased pairing, and the more restrictive property of (total) anisotropy, is a replacement of the
Hodge-Riemann relations beyond positivity in arbitrary characteristic. These relations were in-
troduced by the first author in [1] and Papadakis-Petrotou in [7], respectively. It implies, when
appropriately used, the Lefschetz property for face rings.

Theorem I ([1, 2, 7]). Consider an arbitrary infinite field k, a simplicial cycle µ of dimension d − 1 over k,
and the associated graded commutative face ring k[µ].

Then there exists an Artinian reduction A(µ) and an element ℓ in A1(µ) such that for every k ≤ d/2, we
have the hard Lefschetz property: We have an isomorphism

Bk(µ) ·ℓd−2k

−−−−→ Bd−k(µ).

Here, B denotes the Gorensteinification of A. That is, B is the quotient of A by the annihilator of
the fundamental class (also sometimes called the volume polynomial in this context).

Essentially, biased pairings dictate that the Hodge-Riemann relations do not degenerate at certain
subspaces; total anisotropy dictates that it does not degenerate at any of them. In [2], it was proven
that, given k of characteristic two or k = Q, we have total anisotropy with respect to a transcen-
dental field extension. This proof relied on an earlier argument for spheres by Papadakis and
Petrotou. In general characteristic, we only obtained biased pairing, specifically the nondegenera-
tion at monomial ideals.

Three key issues remained, put forward as questions in [2]:

• Does anisotropy in characteristic 2 naturally extend to p-anisotropy in characteristic p?
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• Is it possible to restrict Artinian reductions for which anisotropy holds? In particular, can
we choose the linear systems of parameters so that they correspond to a geometric realiza-
tion on the moment curve?

• Does anisotropy extend to any characteristic, or is the characteristic two case a lucky coin-
cidence? For one-dimensional spheres, at least, we knew anisotropy extended.

The main theorem in our paper answers the fist two conjectures affirmatively at once given a
certain condition on the cycle µ, and in particular when µ is a homology manifold.

Theorem 1.1 (Total pm-anisotropy on the moment curve). Consider any field k of characteristic p, any
positive integer m, and any (d − 1)-dimensional simplicial cycle |µ| over k. Assume that the following
condition is satisfied:

(∗) For any face τ supported on µ such that 0 < |τ |< d, the link satisfies

H̃d−1−|τ |(lkτ |µ|,k) ∼= k

where H̃• denotes reduced homology and |µ| denotes the support of the cycle µ.

Then, for some field extension k
′ of k, we have an Artinian reduction A∗(|µ|) that is pm-anisotropic, i.e.,

for every element u ∈ Bk(µ), k ≤ d
pm , we have

upm ̸= 0

where B∗(µ) denotes the Gorensteinification. Moreover, the coefficients of the linear system of parameters
can be chosen along the moment curve.

Remark 1.2. For any k-homology manifold M of dimension d − 1, lkτ M has the same homology
as a d−|τ |−1-dimensional sphere [6, p.2]. Thus, Theorem 1.1 applies for homology manifolds and,
in particular, triangulated manifolds.

For a simplicial homology sphere ∆ over F2, the anisotropy property of A∗(∆) with ground field Q
was proved in [4]. As an application of the main theorem, we generalize it to an arbitrary exponent.

Theorem 1.3. Let ∆ be a simplicial complex of dimension d − 1, and let m be a positive integer. If ∆

is a homology sphere over Fp for all prime divisors p of m, then for some field extension k of Q, we have
an Artinian reduction A∗(∆) that is is m-anisotropic i.e. for any nonzero element u ∈ Ak(∆) of degree
k ≤ d

m , we have
um ̸= 0 ∈ Amk(∆).

Corollary 1.4. Let ∆ be a simplicial homology sphere of dimension d − 1 over Z. Then for some field
extension k of Q, we have an Artinian reduction A∗(∆) that is m-anisotropic for any m ≤ d.

The paper is organized as follows. Section 2 introduces the relevant definitions. Section 3 proves a
key lemma about the annihilator of certain monomials in the Gorensteinification B∗(µ). Section 4
establishes Theorem 1.1 by considering certain derivatives of the degree. Section 5 proves Theorem
1.3. Finally, Section 6 discusses potential directions for future research.
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2. PRELIMINARIES

For the definitions of links, stars, face rings, and the Artinian reductions of the face rings, we refer
the reader to [1] and [3]. The following exposition on Gorensteinification and the degree map
has appeared in [2], but we include it here for the reader’s convenience since these notions are
extensively used in the rest of the paper.

2.1. Gorensteinification. Fix an infinite field k. Let ∆ be a simplicial complex. Consider an Ar-
tinian reduction A∗(∆) of a face ring k[∆] with respect to a linear system of parameters Θ. It is
instructive to think of A∗(∆) as a geometric realization of ∆ in k

d, with the coefficients of xi in Θ
giving the coordinates of the vertex i, recorded in a matrix V.

Now, we pick a simplicial cycle
kµ ↪−→ Hd−1(∆;k)

and its dual map Hd−1(∆;k) ↠ kµ∨. Via the canonical isomorphism

Hd−1(∆;k) ∼= Ad(∆),

see [1, Section 3.8] and [8], we have the quotient map Ad(∆) ↠ kµ∨. This quotient map then
induces a pairing through

Ak(∆) × Ad−k(∆) → Ad(∆) → kµ∨ ∼= k.

Bk
µ(∆) is then defined to be the quotient of Ak(∆) by the annihilator in the above pairing.

Definition 2.1. Let Lk ⊂ Ak(∆) denote the subspace of elements that have zero pairing with
Ad−k(∆) and let L =

⊕
k Lk. The Gorensteinification of A∗(∆), denoted by B∗

µ(∆), is defined to
be

B∗
µ(∆) := A∗(∆)/L.

This does not depend on the simplicial complex ∆. A crucial property of B∗
µ(∆) is that it is a

Poincaré duality algebra [2]. The following is immediate.

Proposition 2.2. Consider a simplicial complex ∆ as above and a cycle µ in it. Then the restriction

A∗(∆) −→→ A∗(|µ|)

where |µ| denotes the support of µ, that is, the minimal simplicial complex containing µ, induces an isomor-
phism of Gorensteinifications. In particular, we have

B∗
µ(∆) ∼= B∗

µ(|µ|).

For ease of notation, we shall abbreviate B∗(µ) := B∗
µ(|µ|). For simplicial complexes with unique

homology cycles of dimension (d − 1), we set µ∨ to be the unique cohomology cycle. In particular,
this would be the case for orientable and connected manifolds.

Remark 2.3. Performing Artinian reductions in finite fields can be problematic, so this subsection
assumes an infinite field. In Theorem 1.1, k is allowed to be a finite field while the Artinian reduc-
tion A∗(|µ|) and Gorensteinification B∗(µ) are done in an infinite field k

′. A cycle over k can also
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be considered as a cycle over k′ through the embedding k ⊂ k
′, so the definitions in this subsection

applies by working over k′.

2.2. Degree Map. As explained in the last subsection, we have a surjection ϕ : Ad(∆) ↠ k. Be-
cause Ld = kerϕ, ϕ induces a map

deg : Bd(µ) = Ad(∆)/Ld −→ k

which we call the degree map. Note that the degree map is readily described by the coefficients of
the simplicial cycle: it is enough to define it on cardinality d faces F , as face rings are generated by
squarefree monomials [5, Section 4.3] 1. For a cardinality d face F , we have

deg(xF ) = µF

|V|F |
,

where µF is the oriented coefficient of µ in F , and we fix an order on the vertices of µ and compute
the sign with respect to the fundamental class, and the determinant |V|F | of the minor V|F of V
corresponding to F . For instance, if µ is the fundamental class of a manifold, we have canonically

deg(xF ) = sgn(F )
|V|F |

.

In fact, it is possible to give a degree formula not just for monomials xF s that correspond to faces,
but also for an arbitrary monomial xα. The following formula will be crucial for Section 4.

Lemma 2.4 ([5, Theorem 11]). We have

deg(xα) =
∑

F facet containing supp α

deg(xF )
∏

i∈supp F

[F − i]αi−1

where [F − i] is the volume element of F − i.

The volume element [F − i] is computed as follows: we first fix a general position vector ρ, then
for all F and i ∈ F , we replace the i-th column in the matrix V|F with ρ and set [F − i] to be
the determinant of the resulting matrix. It can be shown that the formula is independent from the
choice of the general ρ [5, Section 4.5].

3. LEMMA ON ANNIHILATOR

We prove an important lemma that allows us to write an element u ∈ B∗(µ) in a specific form so
that the derivative calculation in Section 4 can be done. Fix a field k and assume that Condition
(∗) in Theorem 1.1 applies to the cycle µ. Let k′ be any field extension of k that has an infinite
number of elements. The results presented in this section are for k′, i.e., the Artinian reductions
and Gorensteinifications considered are quotients of the face ring k′[|µ|].

Lemma 3.1. Let τ ∈ |µ| be a d − m − 1-dimensional face where m is non-negative. Then the m-th graded
piece annm

B∗(µ)(xτ ) of the annihilator is spanned by non-face monomials of stτ |µ|.

1Although Lee proves this only in characteristic zero, the argument goes through in general. We shall use his ideas
several times in this paper for general characteristic, provided they apply. We note that all the ideas we use readily
extend without any modification of the argument.
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Proof. Let I = Istτ |µ| ⊂ A∗(|µ|) be the non-face ideal of the star. We then have

Am(|µ|)/Im ∼= Am(stτ |µ|) ∼= Am(lkτ |µ|)

∼=
(
H̃m(lkτ |µ|,k′)

)∨ ∼=
(
H̃m(lkτ |µ|,k)) ⊗k k

′
)∨

where the second isomorphism on the first line is obtained by repeatedly applying the cone lemma
[1, Lemma 3.2], the first isomorphism on the second line is due to the Ishida complex that re-
lates the graded pieces of the Artinian reduction with reduced cohomologies, and the second
isomorphism on the second line is because k

′ is flat over k. Thus, Condition (∗) ensures that
dimk′ Am(|µ|)/Im = 1. Note that the quotient map q : Am(|µ|) → Bm(µ) satisfies q(Im) ⊂
annm

B∗(µ)(xτ ). We therefore obtain the following commutative diagram.

0 Im Am(|µ|) Am(|µ|)/Im 0

0 annm
B∗(µ)(xτ ) Bm(µ) Bm(µ)/annm

B∗(µ)(xτ ) 0

q q q̃

Note that both Bm(µ)/annm
B∗(µ)(xτ ) and Am(|µ|)/Im are one dimensional, the former being so

because Bm(µ)/annm
B∗(µ)(xτ ) ∼= Bd(µ) (multiplication by xτ surjects Bm(µ) onto Bd(µ)). Because

q is a surjection, q̃ is too, so q̃ is an isomorphism. Applying the snake lemma immediately gives us
that q maps Im surjectively to the annihilator. Because Im is spanned by non-face monomials of
stτ |µ|, the annihilator must be too. □

Proposition 3.2. Let u ∈ Bm(µ) be a nonzero element of degree m. There exists a face τ ∈ |µ| of dimension
d − m − 1 such that xτ · u ̸= 0 ∈ Bd(µ). For any such τ, there exists a face σ ∈ lkτ |µ| such that u can be
written as

u = λσxσ +
∑

α

λαxα

where λσ ̸= 0 and supp(xα) ̸∈ stτ |µ| for all α.

Proof. The existence of such τ is gauranteed by the fact that B∗(µ) is a Poincaré duality algebra and
that the face monomials span each graded piece of B∗(µ). If we choose any complementary face
σ of τ such that the union σ ∪ τ is a facet contained in the cycle µ, we can see that uxτ = λσxτ xσ

holds for some scalar λσ because Bd(µ) is one-dimensional. This means that u − λxσ annihilates
xτ in B∗(µ). The statement now follows from Lemma 3.1. □

4. ESTABLISHING FULL p-ANISOTROPY

In this section we prove Theorem 1.1. Let k be any field of characteristic p and let µ be a d − 1-
dimensional simplicial cycle that satisfies Condition (∗). Let v1, ..., vn be the vertices of |µ|. We
set

k
′ := k(t1, ..., tn),

which we will soon show is the field extension appearing in Theorem 1.1. We define the linear
system Θ := {θ1, θ2, ..., θd} for the Artinian reduction by

θi = ti
1x1 + ti

2x2 + · · · + ti
nxn.
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so that Θ corresponds to a geometric realization on the moment curve. For the rest of this section,
B∗(µ) refers to the Gorensteinification formed from the Artinian reduction

A∗(|µ|) := k
′[|µ|]/(θ1, ..., θd)

Let us introduce some notations for convenience. For a vertex v in the support of µ, we denote the
associated partial differential by d/dtv =: ∂v. We write f ≈ g if there exists a nonzero function h

such that f = hpg. The notation is justified by the equivalence ∂(f) ̸= 0 ⇐⇒ ∂(g) ̸= 0 with respect
to any differential operator ∂, which follows from the equation ∂(hpg) = hp∂(g) in any field of
characteristic p.

Lemma 4.1 (Full p-anisotropy). For any nonzero element u ∈ Bk(µ), k ≤ d
p , we have

up ̸= 0 ∈ Bpk(µ).

Proof. Let us write d = pk + ℓ with ℓ ≥ 0. By the Poincaré duality of B∗(µ) there exists a squarefree
monomial xτ ∈ Bpk+ℓ−k(µ) such that xτ u ̸= 0. For later use, we rewrite the face τ as the union of
two disjoint faces ξ, ι with |ξ|= pk − k and |ι|= ℓ.

We will prove that upxι ̸= 0 ∈ Bd(µ). It is clearly sufficient to show ∂ξ(deg(upxι)) ̸= 0. Using
Proposition 3.2, we can express u in the form

u = λxσ +
∑

α ̸∈stτ |µ|
λαxα

where σ lies in lkτ |µ|. Then we can write

∂ξ(deg(upxι)) = ∂ξ(deg(λpxp
σxι +

∑
α

λp
αxp

αxι)) = λp∂ξ(deg(xp
σxι)) +

∑
α

λp
α∂ξ(deg(xp

αxι))

where no mixed terms appear because of characteristic p. Note that α ∪ ι ̸∈ stξ|µ| for each α. It
follows that the differential ∂ξ acts trivially on all terms that arise in Lee’s formula to compute
deg(xp

αxι). Hence we have

∂ξ(deg(upxι)) = λp∂ξ(deg(xp
σxι)) (1)

Therefore, we only have to show that

∂ξ(deg(xp
σxι)) ̸= 0.

Moreover, since the faces ξ, σ, ι are complimentary and together make a unique facet F := ξ ∪ σ ∪ ι,
the differential operator ∂σ acts trivially on all terms in Lee’s formula applied to deg(xp

τ xι) except
for the term corresponding to F , which we denote by tm(F ), so we have

∂ξ(deg(xp
σxι)) = ∂ξ(tm(F )).

The term of our interest tm(F ) is given by

tm(F ) = µF

det(F )
∏
s∈F

[F − i]e(s), e(s) :=


−1 s ∈ ξ

0 s ∈ ι

p − 1 s ∈ σ

.
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In particular, we have e(s) = 0 if s ∈ ι and e(s) ≡ p − 1 (mod p) if s ∈ ξ ∪ σ. Then we find

tm(F ) ≈ µF

det(F )
∏

s∈ξ∪σ

[F − s]p−1. (2)

The task now has reduced to showing that the differential operator ∂σ acts on 2 nontrivially.

The fact that we choose a geometric realization on the moment curve simplifies our calculation for
2 and we find that

µ−1
F tm(F ) ≈ 1

det(F )
∏

s∈ξ∪σ

[F − s]p−1 ≈ 1
det(F )

∏
s∈ξ∪σ


∏

i,j∈ξ∪σ∪ι
i ̸=j

i,j ̸=s

(tj − ti)p−1


≈

∏
i,j∈ξ∪σ

i<j

(tj − ti)1 ∏
i∈ξ∪σ

j∈ι

(tj − ti)0 ∏
i,j∈ι
i<j

(tj − ti)−1

≈
∏

i,j∈ξ∪σ
i<j

(tj − ti)
∏

i,j∈ι
i<j

(tj − ti)−1.

Notice that the last term only depends on the variables which correspond to ι. Therefore,

µ−1
F ∂σ(tm(F )) ≈

∏
i,j∈ι
i<j

(tj − ti)−1∂ξ

 ∏
i,j∈ξ∪σ

i<j

(tj − ti)

 .

Note that ∂σ does not act on µF because µF ∈ k ⊂ k(t1, ..., tn). The product that ∂ξ acts on is
exactly the determinant of the Vandermonde matrix, so upon labeling vertices ξ = [1, pk − k] and
σ = [pk − k + 1, pk], it is given by∏

1≤i<j≤pk

(tj − ti) =
∑

π∈Spk

sgn(π)tπ(1)
1 · · · t

π(pk)
pk .

Then the differential operator ∂ξ acts nontrivially on every term that corresponds to a permutation
π ∈ Spk such that π(1), · · · , π(pk − k) are not divisible by p. This finishes the proof. □

The following corollary of Lemma 4.1 implies Theorem 1.1.

Corollary 4.2. Let B∗(µ) have top degree d, and u ̸= 0 ∈ Bk(µ). Suppose that for a positive integer m

there exists some n such that d
k ≥ pn ≥ m. Then we have um ̸= 0 ∈ Bmk(µ).

Proof. Choose minimal n satisfying the condition. First, notice that it is enough to show upn ̸= 0
since pn is at least m. By p-anisotropy, it suffices to show un ̸= 0. We can reduce to the case m = 1
since n < m would follow from m > 1. □

5. APPLICATION TO RATIONAL COEFFICIENTS

The goal of this section is to prove Theorem 1.3. In order to do so, we establish an auxiliary result
about the choice of a basis. Our argument is similar to the one in [4]. As in Section 4, we have a
variable ti for each vertex vi in |µ| and the linear system θi is defined on the moment curve again.
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For later use, we introduce the notation ordp(f) for a rational polynomial f and a prime p. Any
rational function f ∈ Q(t1, · · · , tn) can be written in the form f = a · P (t1,···,tn)

Q(t1,···,tn) with a ∈ Q and
P, Q ∈ Z[t1, · · · , tn] where each of P and Q has integer coefficients whose gcd is one. Then we
write ordp(f) := |a|p where |a|p is the p-adic valuation of a.

Let the subscript k in the notation A∗(|µ|)k and B∗(µ)k indicate that the ground field used to
construct the face ring is k(t1, · · · , tn). Up to scalar multiplication any element v ∈ Bd(µ)Q can be
written in the form

v =
∑

|I|=d

λIxI

where ordp(λI) ≥ 0 for all I and ordp(λI) = 0 for some I . In this case we can associate to v the
element

[v] =
∑

|I|=d

[λI ] · xI

of Bd(µ)Fp where [λI ] denotes the residue class of λI . Then Lee’s formula implies the following
relation about the degree maps on Bd(µ)Fp and Bd(µ)Q:

[deg(v)] = deg([v]). (3)

We are ready to prove the following auxiliary lemma regarding the linear independence of a col-
lection of monomials with respect to two different fields Fp and Q.

Lemma 5.1. Let µ be a simplicial cycle. Let xσ1 , · · · , xσs be a collection of squarefree monomials of degree
k that are linearly independent in Bk(µ)Fp . Then the same collection of squarefree monomials xσ1 , · · · , xσs

are linearly independent viewed in Bk(µ)Q.

Proof. Suppose that there exist rational polynomials λ1, · · · , λs such that u := λ1xσ1 +· · ·+λsxσs = 0.
Here we may choose the coefficients so that ordp(λi) ≥ 0 for all i and ordp(λi) = 0 for at least one
i. Then the corresponding element [u] = [λ1]xσ1 + · · · + [λs]xσs of Bd(µ)Fp satisfies [u]xτ = 0 for
all squarefree monomials xτ of degree d − k by equation 3. By Poincaré duality, we conclude that
[u] = 0 so the same collection of monomials is linearly dependent in Bd(µ)Fp . □

Proof of Theorem 1.3. The field extension k of Q appearing in Theorem 1.3 refers to k = Q(t1, ..., tn)
and we will prove m-anisotropy in the ring B∗(∆)Q where ∆ denotes our homology sphere. It
suffices to show the statement when m is a prime numbers p. Because ∆ is a homology sphere
over Fp, it must also be a homology sphere over Fp(t1, ..., tn). By [6, p.3], the Artinian reduction
over Fp(t1, ..., tn) is already Gorenstein, i.e.,

A∗(∆)Fp
∼= B∗(∆)Fp .

Because being a homology sphere over Fp implies being a homology sphere over Q [4, Lemma
2.1], we likewise have A∗(∆)Q ∼= B∗(∆)Q. By Lemma 5.1, there exists a common basis consisting
of squarefree monomials xσ1 , · · · , xσs for Ak(∆)Q and Ak(∆)Fp since these two vector spaces have
the same dimension. Any nonzero element u ∈ Ak(∆)Q, up to scalar, admits a presentation of the
form u =

∑s
i=1 λixσi such that ordp(λi) ≥ 0 for all i and ordp(λi) = 0 for at least one i. Then the
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corresponding element

[u] :=
s∑

i=1
[λi]xσi ,

of Ak(∆)Fp is nonzero by the choice of basis. If we write d = pk+ℓ, there exists a face ι of dimension
ℓ − 1 such that xι[u]p ̸= 0 by the proof of Lemma 4.1. By equation 3 we conclude xιu

p ̸= 0. □

Remark 5.2. The reason that Theorem 1.3 is only for homology spheres is because in the proof, we
need Ak(∆)Q and Ak(∆)Fp to have the same dimension, which is not true for an arbitrary cycle
due to potential torsion.

6. OPEN PROBLEMS

The previous paper [2] asked for anisotropy using a specific linear system of parameters, as well
as a generalization of anisotropy in characteristic 2 to p-anisotropy in characteristic p. Our paper
concludes both of these questions. However, we pose the following open questions.

Conjecture 6.1 (Total anisotropy on the moment curve in characteristic p). Let k be any field of
characteristic p, µ any (d − 1)-dimensional cycle over k, and the associated graded commutative face
ring k[|µ|]. Then, for some transcendental field extension k′ of k, we have an Artinian reduction A∗(|µ|)
that is anisotropic, i.e. for every nonzero element u ∈ Bk(µ), k ≤ d

2 , we have

u2 ̸= 0.

We attempted to tackle Conjecture 6.1 by the current approach of engineering clever linear sys-
tems and taking derivatives of the degree map. However, this approach failed and we were left
wondering whether a different method was necessary or that Conjecture 6.1 was false all together.

We also pose the following conjecture. Since there is some debate among the authors about which
generality has a chance, we state the most pessimistic version:

Conjecture 6.2. Consider a reduced Gorenstein standard graded algebra of Krull dimension, at least the
socle dimension. Then a generic Artinian reduction over an appropriate field extension is anisotropic.
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